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Computer Simulations of Object Discrimination by Visual Cortex

Leif H. Finkel and Paul Sajda Department of Bioengineering and Institute of Neurological

Sciences University of Pennsylvania 220 South 33rd Street Philadelphia, PA 19104-6392

ABSTRACT

We present computer simulations of how the visual cortex may discriminate objects based on

depth-from-occlusion. We propose neural mechanisms for how the visual system binds edges into

contours, and binds contours and surfaces into objects. The model is simulated by a system of

physiologically-based neural networks which feature feedback connections from higher to lower

cortical areas, a distributed representation of depth, and phase-locked cortical neuronal firing.

The system demonstrates psychophysical properties consistent with human perception of real

and illusory visual scenes. The model addresses both the binding problem and the problem of

object segmentation.
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In order to discriminate objects, the nervous system must solve two fundamental problems:

binding and segmentation. The binding problem [2] addresses how the attributes of an object-

shape, color, motion, depth-are linked to create an individual object. Segmentation deals with

the converse problem of how attributes of separate objects are distinguished. We have developed

a computer simulation of how the visual cortex may discriminate objects using depth-from-

occlusion. Occlusion presents a paradigmatic problem in the transduction of 2D image intensity

values into object-based representations. Namely, when two surfaces overlap, to which of the

surfaces does the common border belong? Consider, for example, a tree branch crossing in front

of our view of the moon. If the tree branch is, in fact, in front of the moon, then the common

border belongs to the branch. However, if the "half-moons" were actually two separate objects,

then the common border would belong to them as well. The determination of which surface

"owns" the border [11] determines the occlusion relationship. The extraction of depth-from-

occlusion thus provides a simple but powerful paradigm for studying how objects are defined,

discriminated, stratified, and linked. 1

Implementation and Simulation

The simulations consist of multiple, interconnected networks which operate, largely in parallel,

to segment and bind contours, to bind contours and surfaces, to identify occlusion boundaries,

and to stratify objects into different depth planes. Simulations were conducted using the NEXUS

Neural Simulator [18] [19]. The present simulations feature 42 interconnected networks, each of

which contains a topographically organized array of 64x64 units (a total of 1.7x10 5 units). This

total includes both conventional neuronal units, and a new type of network unit called PGN

(programmable generalized neural) units which execute arbitrary functions or algorithms. A

single PGN unit can emulate the function of a small circuit or assembly of standard units. PGN

units are particularly useful in situations in which an intensive computation is being performed

but the anatomical and physiological details of the how the operation is performed in vivo are

unknown. Alternatively, PGN units can be used to carry out functions in a computationally

efficient manner; for example, to implement a one-step winner-take-all algorithm.

Figure 1 shows the major processes carried out by the network system. Early visual pro-
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cessing involves networks specialized for detecting edges, orientation, endstopping, curvature,

and junctions. The next stage of processing involves determining more global properties such as

closure and inside-vs.-outside of a contour. We have used a number of simple mechanisms, based

on known or plausible neural architectures to carry out these tasks. These neural mechanisms

include:

"* feedback connections from higher to lower cortical areas which serve to integrate visual

perception

"* a distributed representation of relative depth [9] [13]

"* a new role for phase-locked cortical firing [6]

"* a neural mechanism for detecting T-junctions and for shuffling objects in relative depth

"* neural mechanism for linking objects across occlusion barriers

Details of network construction and more extensive simulations are described elsewhere [4].

Simulation Results

Figure 2 shows a typical visual scene presented to the system. The early networks discriminate

the edges, lines, terminations, and junctions present. Figure 2A displays how contours are bound

in a visual scene. On the first cycle of activity, discontinuous segments of contours are bound

separately. These contours are later bound together as a result of feedback from the linking

processes.

Figure 2B shows the determination of inside-vs.-outside (we call this the "direction of figure")

for a portion of the scene. The direction of the arrows indicates the direction of the "inside" as

determined by the network.

The presence of T-junctions (e.g., between the horse and the fence) are used by the system

to force various objects into different depth planes. Results of this process are displayed in figure

2C which plots the firing rate of units in the foreground network-this indicates the relative depth

of the objects. The system has successfully stratified the fence, horse, house and sun.

Figure 3 shows a stimulus, adapted from Kanizsa [8], in which there are two possible percep-

tual interpretations (middle panels)-on the left, the two figures respect local continuity (this is
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the dominant human perception); on the right, the figures respect global symmetry. Figure 3A

shows the contour binding tags, and figure 3B shows the direction of figure determined by the

system. Both results indicate that the network makes the same perceptual interpretation as a

human observer.

The final simulation is, again, adapted from Kanizsa [8], and shows a perceptually vivid,

illusory white square in a field of black discs. The illusory square appears closer than the

background, and the four black discs inside its borders appear even closer than the square. This

is an example of what we -all "occlusion capture", an effect related to Ramachandran's capture

phenomenon [16] [15], in which the illusory square has "captured" the discs within its borders

and pulled them into the foreground.

Figure 4A shows the contour binding tags after one (left) and three (right) cycles of activity.

Initially, each disc is bound separately. After several cycles, responses to the illusory square are

generated and the square is given a common tag. Note that the edges of the discs occluded by the

illusory square are now bound with the square, not with the discs. This change in "ownership"

of the edges is the critical step in discriminating the illusory square as an object. For example,

Figure 4B shows determination of the direction of figure after one and three cycles of activity.

The change in which surface "owns" the edge is reflected by a change in the direction of "inside".

Figure 4C displays the firing rate of units in the foreground network (as in 2C), thus showing

the relative depths discriminated by the system. The discs are placed in the background, the

illusory square at an intermediate depth, and the discs located within the borders of the illusory

square are located closest to the viewer. In this case, the depth cue which forces the internal

discs to the foreground is not due to T-junctions, but rather to another network mechanism we

call "surround occlusion". Thus the system demonstrates occlusion capture corresponding to

human perceptions of this stimulus.

Discussion and Conclusions

This model builds upon previous models in physiology [12] [21], neural computation [3] [7] [10] [14]

[20], psychophysics [8] [11], and machine vision [1] [5] [17]. However, the present model is novel

in that it discriminates objects-not just contours. The difference is critical: a network which

generates responses to the three sides of the Kanizsa triangle, for example, is not representing a

5



triangle (the object) per se. To represent the triangle it is necessary to link these three contours

into a single entity, to know which side of the contour is the inside, to represent the surface of the

triangle, to know something about the properties of the surface (its depth, color, texture, etc.),

and finally to bind all these attributes into a whole. The proposed model demonstrates that one

can build a self-contained system for discriminating objects based on occlusion relationships.

The model is successful at stratifying simple visual scenes, for linking the representations of

occluded objects, and at generating responses to illusory objects in a manner consistent with

human perceptual responses. The model uses neural circuits that are biologically-based, and

conforms to general neural principles, such as the use of a distributed representation for depth.

The system can be tested in psychophysical paradigms and the results compared to human and

animal results. In this manner, a computational model which is designed based on physiological

data and tested with psychophysical data offers a powerful paradigm for bridging the gap between

neuroscience and perception.
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Figure 1: Major processing stages in the model. Each process is carried out by one or more
networks. Following early visual stages, information flows through two largely parallel pathways-
one concerned with identifying and linking occlusion boundaries (left side) and another concerned
with stratifying objects in depth (right side). Networks are milltiply interconnected and note

the presence of the two major feedback pathways.
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Figure 2: Object discrimination and stratification in depth. Top panel shows a 64 x 64 input
stimulus presented to the system. A Spatial histogram of the contour binding tags (each box
shows units with common tag, different boxes represent different tags, and the order of the
boxes is arbitrary). Initial tags shown on left; tags after five iterations shown on right. Note
that objects have been linked across occlusions. B Magnified view of a local section of the
direction of figure network corresponding to portion of the image near horse's nose and crossing
fence posts. Arrows indicate direction of inside of figure as determined by network. C Relative
depth of objects in scene as determined by the system. Plot of activity (% of maximum) of units
in the foreground network after 5 iterations. Points with higher activity are "perceived" as being
relatively closer to the viewer.
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Figure 3: Segmentation of ambiguous figures. Upper panel shows an ambiguous stimulus,
adapted from Kanizsa [8], two possible perceptual interpretations of which are shown below.
The interpretation on the left is dominant for humans, despite the figural symmetry of the
segmentation on the right. Stimulus was presented to the system, results shown after three
iterations. A Spatial histogram showing the contour binding patterns (as in fig. 2A). The
network segments the figures in the same manner as human perception. B Determination of
direction of figure confirms network interpretation (note at junction points, direction of figure is
indeterminate).

11



* 0 @

00

I" H ,t'ID l IEID-IFi"H LDLT°II IJWII
r EElIIEL I1U I-'IF-F1

A

D~ 0 C 10[• '0 f ' 0;:
"10 ( • . .0

C~ 0

,- ;- --I'.-,..,
0 0,

-' ,t,, i-"',,

B C

Figure 4: Occlusion capture. Upper panel shows stimulus (adapted from Kanizsa [8]) in which we
perceive a white illusory square. Note that the four black discs inside the illusory square appear
closer than the background. A 64 x 64 discrete version of stimulus was presented to the network.
A Spatial histogram (as in fig. 2A) of the initial and final (after 3 iterations) contour binding
tags. Note that the illusory square is bound as an object. B Direction of figure determined by
the system. Insets show a magnified view of the initial (left) and final (right) direction of figure
(region of magnification is indicated). Note that the direction of figure of the "mouth" of the
pac-man flips once the illusory contour is generated. C Activity in the foreground network (% of
maximum) demonstrates network stratification of objects in relative depth. The illusory square
has "captured" the background texture. 12


